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Abstract: Wormholes are solutions to Einstein’s equations connecting two dierent points of space-

time. Traversable wormhole constructions, in which a particle can enter one side of the wormhole and

exit through the other in a nite amount of time, require large amounts of negative energy. Recent

progress has demonstrated that there exist physical systems that can produce this required amount

of negative energy. In this work, motivated by the Casimir eect, we probe for other physical systems

that might have this negative energy-producing property. Specically, we investigate the minimum

possible uniform energy density that can exist in a bosonic system. Technically, we numerically search

for such states by varying temperature-like variables attached to each site of a chain of nite length.

Future work will then scale this process from 1+1 dimensions up through 3+1 dimensions, determining

the minimum possible uniform energy density in each.
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1 Introduction

It has recently been found that along a nite slab in (3+1)D, a massless Dirac eld admits states with

arbitrarily large amounts of negative energy with respect to the antiperiodic vacuum [1]. Technically,

these states were found numerically by varying over the space of states on this slab. The key takeaway

of [1] is that fermions in (3 + 1)D admit states with arbitrarily large amounts of negative energy.

In this work, we search for the same sort of enhanced negative energy states, now for a bosonic

massive free scalar eld. Technically, in the lattice picture we search for states which have a uniform

energy prole along a chain of N simple harmonic oscillators which are nearest neighbor coupled. Our

search for such states is equivalent to searching over the space of states, as our density matrix takes

the form:

log ρ = −


a

βaHa + const, (1.1)

where Ha are the onsite Hamiltonians, and the βa are parameters that we can vary (c.f. Appendix

B). Thus, the search over states is equivalent to varying the βa’s.

Numerically, we perform a gradient descent algorithm on the βa’s, with a cost function which

sets the energies along our chain to some constant value. In order to compute this energy gradient,

one must invoke symplectic methods, and in particular formulate a notion of symplectic perturbation

theory (c.f. Appendix A).

One can easily show that, given the denition of a symplectic transformation in equation A.1,

the set of symplectic matrices forms a group under matrix multiplication. Thus, we follow the multi-

plicative perturbation scheme introduced in [2], as opposed to the usual additive perturbation scheme,

as it naturally takes into account this property of symplectic transformations. The details of this

perturbation scheme are reviewed in Appendix A.

Applications to Wormholes

Certain solutions to Einstein’s eld equations in General Relativity, specically those of the traversable

wormhole between two spacelike separated regions of spacetime, require the existence of large amounts

of negative energy within the wormhole [3]. Thus, discovering physical states in a given physically

reasonable quantum eld theory (QFT) that have arbitrarily large amounts of negative energy helps

to validate these wormhole constructions.

As a technical note, also mentioned in [1], the construction presently discussed does not discover

states with (2 + 1)D Poincaré invariance, which is required of states which support a traversable

wormhole. This is simply because we did not impose such a condition within our numerical search,

and thus it does not show up in our cost function. Thus, the results here only suggest that further

work is required to determine whether physical states in this eld theory can have arbitrarily large

negative energy and the aforementioned Poincaré invariance.

Outline

The outline of this thesis is as follows. In section 2 we discuss the setup of our system, both in the eld

theory and lattice pictures. We then discuss the specic case of periodic conditions, which will be the

scenario with respect to which we dene our negative energy. We end section 2 with a brief comparison

between the eld theory and lattice pictures, which allows us to gain eld theoretic intuition about

the choices we makes in the lattice picture. In section 3, we begin by motivating the use of symplectic

methods in this model. We then expand on the numerical methods being used, and briey mention

the symplectic perturbation scheme. This scheme is more fully discussed in Appendix A. Finally,
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in section 4, we discuss the results we have found in our analysis, as well as the key takeaways and

interesting next steps.

2 Setup of the Problem and Energy Regulation

Consider a (1 + 1)D bosonic massive free scalar eld theory on an interval with unspecied boundary

conditions. We wish to vary over all allowed states, and compare the ground state energy in each.

Technically, this is most easily done by lattice regulating our eld theory. Below we set up the eld

theory picture of our general system, and then consider the most general lattice realization. After

this, we move on to analyze the specic case of periodic boundary conditions.

2.1 Field Theory Picture

Before describing our system as a eld theory, we mention that we work in natural units within this

thesis (i.e., c = ℏ = 1). Dimensionally, this means that position is equal to inverse momentum, that

energy is equal to inverse time, and that position is equal to time. Also, throughout this thesis we will

be using the mostly − signature, which in (1 + 1)D is (+−)1.

The continuum picture of our system is described by a simple massive free scalar eld with

Lagrange density:

L =
1

2
(∂tφ)

2 − 1

2
(∂xφ)

2 − m2

2
φ2, (2.1)

Our problem then becomes the following: given a (1 + 1)D interval along this eld theory, what is

the minimum possible energy achievable when varying over the space of states. In order to obtain

meaningful energies from our eld theory, we must regulate it in some way, as it is well known that

QFT calculations are riddled with innities. For its ease of numerical implementation, we will be

using a lattice regulation of our eld theory, which simply means that we consider an analogous lattice

system to our eld theory which preserves the same physics. Such a lattice model is described below.

2.2 Lattice Picture

To numerically realize our system in (1+ 1)D, we lattice regulate our eld theory picture. That is, we

consider N nearest neighbor interacting simple harmonic oscillators with an additional onsite term:

H =

N

i=1


p2i
2m

+
1

2
mΩ2q2i +

λ

2


(qi − qi−1)

2 + (qi − qi+1)
2


(2.2)

Here, m is an onsite mass2, λ is the coupling strength between nearest neighbors, and Ω is the frequency

of onsite springs. An intuitive picture of this setup is seen in gure 1. As with the eld theory picture,

in the lattice picture we wish to vary over the states to nd the minimum possible uniform energy

density. This would correspond to varying over how site 1 is connected to site N

1It should be noted that this convention makes me just as nauseous and unwell as it would for any sane physicist.

But, I promise it makes things easier– I’m not going to the dark side without reason.
2Note that this mass is dierent in general than the mass that appears in our eld theory picture. As discussed in

section 2.3.3, the frequency Ω of the onsite spring seen in gure 1 is equivalent to something like the mass of our eld

theory
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Figure 1. Simple picture of our lattice regulated eld theory.

2.3 Periodic Boundary Conditions: This Again?

As mentioned extensively in the above sections, we would like to nd the minimum possible energy

in our system by varying over the allowed states on our slab. Before moving on to the general case,

which is covered in sections 3 and 4, we will consider the special case of periodic boundary conditions.

In both pictures, this is equivalent to connecting the two spatial ends of our (1 + 1)D system into a

circle.

The reason we care about the periodic boundary condition case is because this will be the setup

with respect to which we dene our negative energy. That is, if we nd a state with energy less than

that computed in the periodic boundary condition system, then we will consider this new state to

have negative energy.

Through this example, we will learn about regulating the innities that naturally appear in QFT,

and about the connection between the eld theory and lattice pictures.

2.3.1 Field Theory Picture

It is well known that a general solution to equation 2.1 subject to periodic boundary conditions is of

the form:

φ(x) =


k


ckake

−ik·x + c∗ka
†
ke

ik·x

, (2.3)

with k = n
R , where here x = (t, x) and k = (ω, k) is a reduction of the usual 4-vector notation used in

eld theory to (1+ 1)D. The equations of motion for equation 2.1 are found using the Euler-Lagrange

equations:

∂µ
∂L

∂ (∂µφ)
=

∂L
∂φ

=⇒ ∂2
t φ = ∂2

xφ−m2φ, (2.4)

which, upon plugging in for equation 2.3, gives the dispersion relation:

ωk =


k2 +m2, (2.5)

where again, imposing periodic boundary conditions, k = n
R , with n  N and R the radius of the circle

that our chain forms.

Calculating the minimum energy for this system (i.e., computing the ground state energy, which

in Fock space is the state 0, 0,   ⟩), we nd a divergent sum:

EFT
gs =



n∈Z

ωn

2
=



n∈N


n2

R2
+m2, (2.6)

where we have dropped the constant shift in energy provided by the n = 0 term in the sum3, since

all we care about is dierences in energies. In order to get a sensible answer, we must regulate this

3Yes, I dene 0 ∈ N, okay? It’s the superior convention.
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sum in some way, such that we can extract a universal and nite answer. Ideally, this nite part will

be independent of the choice of regulator. Below we consider a few regulators, and show that they all

give the same nite contribution to the ground state energy.

Setting m = 0

Setting m = 0 seems to be a harsh choice of regulator, as we are now considering a massless eld, which

naively would give a dierent ground state energy than a massive eld. However, we may nonetheless

compute the sum in equation 2.6. Doing so, the sum we wish to compute now becomes:

EFT
gs =

1

R



n∈N

n, (2.7)

which can be regulated using the Zeta function4. Thus, our ground state energy becomes:

EFT
gs = − 1

12R
 (2.8)

This is exactly what we wanted! We have obtained a nite answer for our previously divergent sum.

We then hope that other choices of regulator will give a nite contribution to the ground state energy

that is equal to that seen in equation 2.8. As a side note, the fact that this energy is negative is a

phenomenon known as the Casimir eect, and which has been observed experimentally to occur (c.f.

[4]).

For those who have not seen, or are uncomfortable with using, the Zeta function, we can equally

tame the sum in equation 2.7 by setting n → ne−ϵn in the limit ϵ → 0 Doing so, our sum becomes:



n∈N

ne−ϵn = −


n∈N

∂ϵe
−ϵn = −∂ϵ



n∈N


1

eϵ

n

= −∂ϵ


1

1− e−ϵ


, (2.9)

where we have used the linearity of the derivative and the geometric sum formula. Then, performing

this derivative, we get that our total ground state energy is:

EFT
gs =

1

R

eϵ

(eϵ − 1)
2 =

1

2R

1

cosh (ϵ)− 1
 (2.10)

And, Laurent expanding this function about small ϵ, we nd that:

EFT
gs =

1

2R


2

ϵ2
− 1

6
+

ϵ2

120
+O


ϵ4


, (2.11)

where the nite term in the limit of ϵ → 0 is again − 1
12R , as expected.

Setting mR → 0

This is a slightly less strict form of regulation than the m = 0 case we considered above. We are

simply assuming we are in the limit of vanishing mass, or equivalently the limit of vanishing radius

for our system. Either way, our ground state energy equation 2.6 in this limit (upon expanding the

radical) becomes:

EFT
gs =

1

R



n∈N


n+

m2R2

2n
+

m4R4

8n3
+O


m6R6


 (2.12)

4The Zeta function is given by ζ(s) =


n∈N n−s So, we see here that we wish to compute ζ(−1), which has a known

value of − 1
12


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Thus, we can regulate the rst and third term as we did above using the Zeta function5, and the

second term we can regulate using the Ramanijan summation and the Cauchy principal value6:



n∈N

1

n
= γE  (2.13)

We can equally say that this term in equation 2.12 blows up, as one can argue that the Zeta function

has a simple pole at s = 1. Either way, to leading order in mR, we see that the nite term in the

ground state energy is given by EFT
gs = − 1

12R , as expected.

Power Series in mR

The nal choice of regulator we will consider is a power series in mR, which is exact. That is, recall

that the binomial theorem says that:

(x+ y)n =

∞

k=0

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
xn−kyk, (2.14)

where here Γ(z) =
∞
0

tz−1e−tdt is the usual gamma function. Using this, our ground state energy

becomes:

EFT
gs =

1

R



n∈N


n2 +m2R2 =

1

R



n∈N

∞

k=0

Γ(32)

k!Γ(32− k)
(mR)2kn1−2k (2.15)

Separating our the k = 0 and k = 1 terms, we nd:

EFT
gs =

1

R



n∈N

n+


n∈N

Γ(32

Γ(12)

(mR)2

n
+



n∈N

∞

k=2

Γ(32)

k!Γ( 32 − k)
(mR)2kn1−2k


, (2.16)

where we can regulate the rst and third term using the zeta function, and we can regulate the second

term using the Cauchy principal value method used above. Then, we get that our ground state energy

is:

EFT
gs = − 1

12R
+

m2R2

2R
γE +

∞

k=2

Γ(32)

k!Γ( 32 − k)
(mR)2kζ(2k − 1), (2.17)

where here we swapped the order of sums in the third term and used the denition of the zeta function.

As expected, the leading order of this expression exactly agrees with our previous regulators,

meaning we have found a universal, nite energy which is the physical energy of the system, which

should be the same regardless of choice of regulator. Thus, we choose to use the lattice regulator, as

our above analysis suggests that it should still give the same nite contribution to the ground state

energy.

Before proceeding, we note how the above analysis ts into our solution. We have shown above

that we can regulate our eld theory such that we extract a nite, physical energy (this is the − 1
12R

that we kept nding). Then, what we want to do is to nd a state such that even this nite, physical

energy can be arbitrarily negative. So, the enhanced negative energy that we are nding is not the

product of a lack of regulator. Instead, it is a novel statement about subsystems of a eld theory.

5Where here the term proportional to n is regulated by ζ(−1) and the term proportional to n−3 is regulated by ζ(3).
6The cauchy principal value of a function f(x) at x is given by limϵ→0

f(x+ϵ)+f(x−ϵ)
2

.
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2.3.2 Lattice Picture

We begin with our Hamiltonian given in equation 2.2, and we impose periodic boundary conditions.

That is, we have a chain of N nearest neighbor interacting particles. We start by assuming a purely

classical system. Then, using Hamilton’s equation, we get that the equations of motion are:

mq̈j = −

mΩ2 + 4λ


qj + 2λqj+1 + 2λqj−1, (2.18)

which, upon imposing periodic boundary conditions, is solved by:

qn(t) = Ae−iωt−ikna, (2.19)

for a the lattice spacing (i.e., the distance between sites on our lattice). As we’ve invoked periodic

boundary conditions, this solution is invariant under the shift k → k + 2π
a , meaning we may set

k = kn = 2πn
Na  Then, plugging this solution into equation 2.18, and using the above invariance of k,

we get:

−mω2qn = −

mΩ2 + 4λ


qn + 2λqn+1 + 2λqn−1 = −


mΩ2 + 4λ


qn + 2λqne

−ika + 2λqne
ika (2.20)

So, our dispersion relation is:

ω = ωn =


Ω2 +

8λ

m
sin2


ka

2


=


Ω2 +

8λ

m
sin2

πn
N


 (2.21)

So far, we’ve considered only a classical system. Quantizing our results, subject to the commuta-

tion relations:

[q̂n, p̂n′ ] = iδnn′ , (2.22)

we get a solution:

q̂n(t) =


l


Âle

−i(ωlt−klna) + Â†
l e

i(ωlt−klna)

 (2.23)

Then, using the usual denition of the position and momentum operators:

q̂i =
1√
2mω


a†i + ai


p̂i = i


mω

2


a†i − ai


, (2.24)

we nd that nding the quantum mechanical energy expectation value, ⟨H⟩0 ≡ ⟨0H 0⟩ ,, from 2.2,

is:

ELat
gs =

N2

n=1


ωn

2
+

Ω2

2ωn
+

2λ

mωn


 (2.25)

Thus, we have found the ground state energy7 of our (now quantum mechanical) lattice regulation of

our eld theory. Let’s take a slight (but benecial) detour and discuss what we have found.

7This is an energy. Later in section 3.2 we are computing energy densities. So, in section 4 when we plot our

preliminary results, we must divide the above analytic solution for the energy by the number of sites.
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2.3.3 Lattice vs Field Theory vs Brown vs The Board of Education

Above we have found that the ground state energy for our eld theory is given by equation 2.6, whereas

that for our lattice regulated eld theory is given by equation 2.25. The lattice energy should equal

the eld theory energy in the limit of large N, such that Na is held constant. Moreover, in this limit

the two dispersion relations, given by equations 2.21 and 2.5, should also be equal. Taking this limit,

we nd the following:

ωLat
k ≈


Ω2 +

8λ

m

π2n2

N2
, (2.26)

Comparing this equation with the form of the eld theory dispersion relation, equation 2.5, we nd

that, in the limit of large N, these two pictures agree when we set Ω = mFT and R = N
2π


m
2λ . And,

since we know that the length of our slab in the eld theory picture is proportional to Na, where a

is the lattice spacing, we see that we further set a =


m
2λ  The extra 2π in our formula for R is an

artifact of interchanging between R being the radius and circumference of the circle that our system

forms when imposing periodic boundary conditions.

That is, we have found that the onsite spring in our lattice model is something like the mass in

our eld theory, which is a useful tool to help build intuition between these two pictures. Moreover,

by equating these two dispersion relations in a certain limit, we have found for free that the length

of our slab in the eld theory is equal to the number of sites times the lattice spacing in the lattice

picture, and we have found a formula for the lattice spacing.

Now that we have discussed the periodic boundary conditions system, let’s remove this rather

stringent constraint. In the next section, we will build up the methods necessary to probe over

arbitrary states on our slab.

3 Methods

Now that we have setup our problem, and have considered the special case of periodic boundary condi-

tions, we may now move on to the more general case. In this section, we discuss the methods necessary

in order to complete our analysis. In the last part of this section, we also develop a perturbation theory

on symplectic eigenvalues, which is vital in our solution.

3.1 Why Symplectic?

In section 1, we mentioned that our system of interest is solved using the notion of symplectic trans-

formations. We will now briey describe why this is.

In the limiting case of N = 1, we see that our Hamiltonian simplies to something like:

H =
1

2


Ap2 +Bx2


, (3.1)

for some constants of the system A and B The key observation here is that equation 3.1 looks like a

harmonic oscillator. What we’d like to do now is to make this vague observation more obvious. So,

let’s consider the mapping x → λx = x̃ and p → 1
λp = p̃, where λ  R×. Then, our Hamiltonian maps

to:

H =
1

2


Aλ2p̃2 +

B

λ2
x̃2


 (3.2)

Upon assuming that λ2 =


B
A , we nd that our Hamiltonian is:

H =

√
AB

2


p̃2 + x̃2


, (3.3)
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where 1
2


p̃2 + x̃2


is the harmonic oscillator with ω = m = 1, and thus has a spectrum of


n+ 1

2


.

Thus, we have found a transformation which has taken our initial Hamiltonian 3.1 to something that

is diagonal in the x, p basis of the form diI2, as in equation 3.3, where I2 is the 2× 2 identity. Such

a transformation is provided from Williamson’s theorem, and thus is symplectic (c.f. Appendix A).

Thus, moving to arbitrary N inductively, we see that symplectic transformations will play a crucial

role in diagonalizing our Hamiltonian.

3.2 Computing Energies

It was shown in [5] that for a given lattice theory, if there is a state with some distribution of energy,

there must exist a state, with the same energy distribution, which maximizes the von Neumann entropy

−Trρ log ρ We know that such a state must take the form:

ρ =
1

Z
e−


a βaHa , (3.4)

for some parameters βa (c.f. Appendix B).

Clearly from equation 3.4, we see that our energies will depend on βa To numerically compute the

energies, we start with the partition function derived in Appendix B. We know that H =


a βaHa

is a positive denite, real, 2N × 2N matrix, and so is subject to Williamson’s theorem. Thus, there

exists a symplectic matrix S that transforms SHST to a direct sum of harmonic oscillators. That is:

SHST =

N

i=1

di


1

2
x̃2 +

1

2
p̃2

 (3.5)

Thus, our partition function becomes:

Z = Tr

e−


a βaHa


→



{ni}



i

e−di(ni+
1
2 ) (3.6)

=

N

i=1

e−di2
∞

ni=0

e−dini , (3.7)

where in equation 3.6 we use that the spectrum of

1
2 x̃

2 + 1
2 p̃

2

is ni +

1
2 , for ni the usual occupation

number at site i In equation 3.7, we use ∞ for the upper bound of the occupation number because

we are considering a bosonic system. Then, using the usual geometric sum rule on equation 3.7, we

get that our partition function is:

Z =


i

e−di2

1− e−di
, (3.8)

where di are the symplectic eigenvalues of H

Next, let’s derive the onsite energy in our system. Well, at a site a, the energy Ea is related to

the partition function via Ea = d
dβa

(− lnZ)  Then, using equation 3.8:

Ea =
d

dβa



i


di
2

− ln

1− e−di



=

d

dβa



i


di − ln


2 cosh

di
2


=

d

dβa



i

h0(di) (3.9)

It then follows, from the functions dened in Appendix C, that we can write:

Ea =


i

h1(di)
d

dβa
di (3.10)
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But, what is this d
dβa

di quantity? Well, this is precisely the rst order perturbative correction to the

ith symplectic eigenvalue of the matrix M = M0 + gV = H + gHa, for some small parameter g Thus,

dening d
dβa

di ≡ d
(1)
i,a , we see that our onsite energy is given by:

Ea =


i

h1(di)d
(1)
i,a , (3.11)

where d
(1)
i,a is dened in section 3.4 below.

3.3 Gradient Descent

Since from equation 3.11 we see that the onsite energies do in fact depend on our βa’s, to minimize

our energy, we may wish to numerically search over the space of states by varying βa As a brief

aside, we wish to clarify that varying over βa is in fact varying the state of our system. We saw

above that the state of our system is given by equation 3.4:

ρ =
1

Z
e−


a βaHa , (3.12)

which clearly shows that by varying over βa we are varying over the state of our system. And, now

that we have introduced these onsite parameters βa, we may consider an altered Hamiltonian, which

will be the weighted sum of onsite Hamiltonians:

H =


a

βaHa, (3.13)

where each Ha is a term in the sum of equation 2.2. We are considering 3.13 to be our new Hamiltonian

instead of 2.2 because we wish to nd a true minimum energy for our system, where we only hold

xed the size of our slab. But, by varying βa, and thus varying 3.13, we aren’t actually changing

the boundary conditions of our system. This is simply because some congurations of our state don’t

have a boundary condition interpretation, and so we can only consider them on an open chain. Then,

we would really consider our slab to have some (possibly mixed) state, which is then puried by the

outside physics8. However, we don’t care about this outside physics, so it suces to only change the

state.

To ensure that a given set βa produces a physical state, we can require that we minimize the

cost function:

C(β, E⃗) =
1

2



a


Trρ(β)Ha − Eset

a

2
=

1

2



a


Ea − Eset

a

2
, (3.14)

where here E⃗set = (Eset
1 ,    , Eset

N ) is the set of energies that we are xing. But, we are specically

looking for uniform energy proles. Then, to numerically nd a minimum of our energy, we can

proceed using a gradient descent algorithm, subject to the constraint that our energy density prole

is uniform. That is, we use the cost function:

CU =
1

2



a


Ea − Eset

2
, (3.15)

for some xed Eset. Following [1], we will set Eset to the energy of the middle site(s) of our chain, and

we will initially set these β to be much larger than the others along the chain. And, when updating

8One possible set of purications is simply identifying the ends of the slab with periodic or antiperiodic boundary

conditions. However, often the purications are not amenable to such boundary condition interpretations, and instead

describe some non-trivial physics outside the slab.
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the β parameters, we do not update βmid. As an aside, the reason that this sets a true minimum

in our chain is because, when we set βmid to be large, we are nding Emid in the limit T → 0 In

words, this 0 temperature limit is truly the lowest energy that one can achieve. So, since our cost

function sets all other energies equal to this true minimum energy, we are guaranteed to nd a uniform

minimum energy prole when minimizing the cost function9. And, when βmid is large enough, Emid

is independent of the other choices of βa, as the Hmid term will dominate in the Hamiltonian 3.13.

To reiterate, we know that minimizing the cost function 3.15 has to do with minimizing the

resultant uniform energy density because we hand select βmid such that Emid is the true T → 0

ground state energy. We then optimize the other βa such that our energy prole is uniform, where

each energy is being set to this T → 0 limit of Emid. Moreover, we choose to set the middle energy

to the T → 0 limit because this site on our chain is the most insensitive to the physics outside of our

slab. This is important because, for large enough N, we can assume that the energy we select in the

middle of the chain is not only in the T → 0 limit, but also in the N → ∞ limit, meaning it is in fact

the vacuum ground state energy for T → 0

Thus, at each step of the gradient descent, we update our parameters using the rule:

βa → βa − α
∂CU

∂βa
, (3.16)

where as usual α is some learning rate that we choose to maximize the eciency of our algorithm. In

order to compute the gradient ∂CU

∂βa
, we must nd the gradient of the energies. That is, we see that:

∂CU

∂βb
=



a


Ea − Eset

 dEa

dβb
 (3.17)

The gradient of energy is computed explicitly in Appendix C, where we nd that:

dEa

dβb
=



i

h2(di)
ddi
dβa

ddi
dβb

+


i

h1(di)
∂2di

∂βa ∂βb
 (3.18)

We already saw above in section 3.2 that ddi

dβa
is equivalent to the rst order perturbative correction

to the ith symplectic eigenvalue of the total Hamiltonian perturbed by the ath onsite Hamiltonian.

From equation 3.18 we see that we must make sense of
∂2di

∂βa ∂βb
. The correct interpretation of this

derivative is that it is the second order perturbative contribution to the ith symplectic eigenvalue of

the total Hamiltonian perturbed by the ath and bth onsite Hamiltonians via some small parameters

ga and gb, respectively. This can readily be seen by expanding out the denition of the derivative.

Thus, we have found that
∂2di

∂βa ∂βb
≡ d

(2)
i,a,b. Next, let’s develop a perturbation scheme on sym-

plectic eigenvalues, since these seems to be vital in our current analysis10.

3.4 Perturbation Theory on Symplectic Eigenvalues

Suppose we have a 2N × 2N real positive denite matrix M = M0 + gV, for some small parameter g,

and we wish to perturbatively solve for the symplectic eigenvalues of M Then, utilizing Williamson’s

9Since the energy saturates exponentially in β (which can be found by recalling that the energy of a simple harmonic

oscillator is proportional to the average occupation number, which itself can be written in terms of an inverse exponential

using Bose-Einstein statistics.
10After searching the literature, there seemed to be no concrete method of computing perturbative corrections to

symplectic eigenvalues to rst and second order. Thus, section 3.4 is a novel extension of the work in [2], where we oer

analytic formulas for the rst and second order perturbative corrections to symplectic eigenvalues.
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theorem on M , and equation A.5:


S0 + gBS0 + g2CS0 +   


(M0 + gV )


ST
0 + gST

0 B
T + g2ST

0 C
T +   


=

N

j=1


d
(0)
j + gd

(1)
j   


I2,

(3.19)

where I2 is the usual 2 × 2 identity matrix, and d
(i)
j is the ith perturbative correction to the jth

symplectic eigenvalue.

Next, we can match either side of equation 3.19 in powers of g To 0th order, we get the usual

statement of Williamson’s theorem:

S0M0S0 =

N

j=1

d
(0)
j I2 (3.20)

To 1st order in g, though, we get a more interesting result:

BS0M0S
T
0 + S0V ST

0 + S0M0S
T
0 B

T =

N

j=1

d
(1)
j I2 (3.21)

And, to 2nd order in g, we get the equation:

CS0M0S
T
0 +BS0V ST

0 +BS0M0S
T
0 B

T + S0V ST
0 B

T + S0M0S
T
0 C

T =

N

j=1

d
(2)
j I2 (3.22)

We next wish to solve for the rst and second order perturbative contributions to a given symplectic

eigenvalue of M . Before proceeding, though, we must permute our symplectic matrices such that

Williamson’s theorem reads:

S′
0M0S

′
0 = D(0) =


Λ(0) 0

0 Λ(0)


, (3.23)

where here Λ(0) is an N ×N diagonal matrix of the N d
(0)
j ’s. Such a permutation matrix is straight-

forwardly found to be constructed by the rule that, on the ith row of our permutation matrix σ, the

only nonzero element lies on the jth column, where j = N + i
2 when i is even and j = i+1

2 when i is

odd. With this permutation, Williamson’s theorem takes the form of equation 3.23 when we set:

S′
0 = σTS0 (3.24)

Throughout the rest of this section we will assume that we have already multiplied by this σ.

Then, using equation 3.20, equation 3.21 becomes, in component form:

BikD
(0)
kj + Pij +D

(0)
ik


BT


kj

= D
(1)
ij , (3.25)

where here and the rest of this section we will use Einstein’s summation convention11, and we dene

P ≡ S0V ST
0  Then, assuming i = j here, and not summing over a repeated i, we nd that equation

3.25 becomes:

2Biid
(0)
i + Pii = d

(1)
i  (3.26)

We learned in appendix A that equation A.6 implies that, as blocks, B11 = −BT
22 Thus, noting that

D
(0)
ii = D

(0)
i+N,i+N , we can shift the i index in equation 3.26 by N, assuming i ≤ N, to get:

−2Biid
(0)
i + Pi+N,i+N = d

(1)
i  (3.27)

11That is, a repeated index in a given term is assumed to be summed over.
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Finally, adding equations 3.26 and 3.27, and solving for d
(1)
i :

d
(1)
i,a =

Pii + Pi+N,i+N

2
 (3.28)

Thus, we have found a formula for the rst order perturbative correction to symplectic eigenvalues.

Here, the a in the subscript was added to remind us that, for the problem at hand, the P matrix is

constructed from the ath onsite Hamiltonian, as this is our perturbing matrix.

Now, we wish to nd the second order perturbative correction. In order to do this, though,

equation 3.22 tells us that we need to know the form of B. To compute components of B, it’s as

simple as using the symmetry properties of B from equation A.6, along with equation 3.25 when i ̸= j

Combining these, it’s straightforward to nd, for i ̸= j and i, j ≤ N :

Bij =
d
(0)
j Pij + d

(0)
i Pi+N,j+N


d
(0)
i

2

−

d
(0)
j

2 , (3.29)

Bi+N,j =
d
(0)
i Pi,j+N − d

(0)
j Pi+N,j


d
(0)
j

2

−

d
(0)
i

2 (3.30)

Bi,j+N =
d
(0)
j Pi,j+N − d

(0)
i Pi+N,j


d
(0)
i

2

−

d
(0)
j

2 , (3.31)

and for i = j ≤ N, we nd that:

Bii =
Pi+N,i+N − Pii

4d
(0)
i

 (3.32)

The above equations give all of the contributing components of B. One may notice that we have

not dened the diagonal elements of the o-diagonal blocks of B. This is because there is actually no

closed form solution for these elements. This corresponds to some freedom on our choice of B, where

this freedom lies along the diagonal elements of the o-diagonal blocks because J has its non-zero

elements along these components.

Assuming that C has a block form, equation A.7 tells us that C11+CT
22 = B2

11+B12B21 Using this

formula, we can get rid of the C’s in equation 3.22, allowing us to write the second order perturbative

contribution to our symplectic eigenvalues as:

d
(2)
i,a,b = d

(0)
i


B2

11


ii
+ (B12B21)ii


+ (PikBik + Pi+N,kBi+N,k) +

1

2
d
(0)
k


(Bik)

2
+ (Bi+N,k)

2

, (3.33)

where we are only summing over k Here, the a, b subscripts were added to remind us that, generally,

we consider d
(0)
i to be the ith symplectic eigenvalue of the matrix M = M0 + gaVa (no sum over a),

where for us M0 = H is the total Hamiltonian, Va = Ha is our rst perturbing onsite Hamiltonian,

and ga is some small parameter. Then, P is constructed with the second perturbing matrix Vb, which

for us is Hb The reason we consider M to be already perturbed above is because of our analysis in

3.3, where we saw that d
(2)
i,a,b corresponds to the second derivative

∂2di
∂βa ∂βb

≡ ∂

∂βb

∂di
∂βa

. Thus, we

perturb an already perturbed matrix12.

Now that we have formulated our numerical methods, let’s consider our results.

12As a note, the analysis just presented is symmetric in swapping a and b, as the partial derivatives commute with

each other.
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4 Results and Discussions

We now have all of the necessary tools to perform our calculation. Preliminary results, found by

minimizing our cost function using a gradient-free optimization algorithm, show that there do in fact

exist states with energy less than that of a state with periodic boundary conditions. These results are

seen in gure 2. Although these data are incredibly noisy (in part due to the brute force algorithm

not converging for certain Ω), we see clear evidence for the existence of states that have enhanced

negative energy. To clarify, these energies (the orange points) are enhanced simply because they are

less than the energies of states with the same Ω where periodic boundary conditions are imposed (the

blue points for numerical results or the green line for analytic results).

Figure 2. Numerical evidence of negative energy enhancement in 1D on a chain of length N = 10. The blue

data points are made from performing our optimization algorithm over the βas for the Hamiltonian 3.13 with

additional terms that impose periodic boundary conditions. The orange data points are made from performing

our optimization algorithm over the βas for the Hamiltonian 3.13 as it is, without any additional boundary

conditions. The green line is the analytic ground state energy for a system with PBC, from 2.25. We have

selected λ = 1, m = 1.

A useful plot to discuss the validity of the numerical results in gure 2 is gure 3. We see that, on

gure 3, the points where the blue data is closest to the green analytic line in gure 2, we have relatively

small cost function values for the PBC system. And, points where the non-PBC system energy either

goes negative (which is impossible here, since our Hamiltonian is positive denite) or is larger than the

analytic PBC energy (which should not happen if we truly have energy enhancement), the associated

cost function values are two orders of magnitude larger than those of the other, likely more accurate,

energies. And, the fact that these two scenarios – the non-PBC becoming negative and being larger

than the analytic PBC energy – have cost function values of the same order of magnitude, they are

both likely not reasonable results. We know for sure that the negative energy result is inconsistent

with our Hamiltonian, and so we can deduce that the points where our non-PBC energy is greater

than that of the analytic PBC system are also inconsistent. Thus, gure 3 gives further evidence that

our enhanced energy states are valid.
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Figure 3. Cost function (3.15) values for the numerical data shown in gure 2, plotted on a log-log plot due to

the large range of values. A smaller cost function value corresponds to a more accurate corresponding energy

value in gure 2. The blue and orange data correspond to those in gure 2.

We are working on nd an analytic expression for the second order perturbative contribution to

symplectic eigenvalues. Once we nd this, our numerical implementation will increase in speed greatly.

After we nd the minimum possible negative energy by implementing this gradient descent algo-

rithm, the process would proceed as follows. We would perform this minimization of the energy for

various Ω, which in 2.3.3 we saw is equivalent to the eld theory mass. Then, we would nd the power

law relationship between the minimum energy and Ω That is, suppose we nd that the optimized

ground state energy that we nd scales as Ωp Then, in the fashion of [1], a massless bosonic eld of

suciently high dimension would have a UV sensitive ground state energy.

To clarify, suppose we nd that our optimized ground state energy scales as Ωp Then, we would

consider a (d+1)D massless bosonic eld, with d− 1 transverse dimensions having on-shell momenta.

That is, each transverse direction can itself be considered a (1+1)D bosonic eld with mass given by the

corresponding on-shell momentum. Each momentum is on-shell (or, can be considered a mass) because

the transverse dimensions are not on a slab, but are translation invariant. Thus, their contribution

to the eld are of the form eik⊥·z⊥ , multiplied by the (1 + 1)D eld along the slab, where k⊥ are the

transverse momenta and z⊥ are the transverse directions. Our (now massless) (d + 1)D eld theory,

described by:

L =
1

2
(∂tφ)

2 − 1

2
(φ)

2
, (4.1)

picks up an extra factor of −k2
⊥
2 ϕ2, which looks like a mass. The reason, for suciently large d, that

we have a UV sensitive optimized ground state energy is because our energy goes as:


dkd−1
⊥ k⊥p (4.2)

Thus, what we have found is that, if our power law relationship in the (1 + 1)D case has a power

of p > 1 − d, then our (d + 1)D energy is clearly UV sensitive. Thus, the corresponding states in
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our (d + 1)D eld theory carry negative energy that can be arbitrarily negative, since our energy is

unbounded when taking the limit of large mass cuto.

It would be interesting to consider the above analysis with two additional, physical constraints.

Firstly, the states we search for above are not physically allowed states within a wormhole construction,

so we would rstly want to impose a (2 + 1)D Poincaré invariance, which would guarantee that our

states are physical. Secondly, it would be interesting to impose the constraint that our states are

stationary. That is, that the Tzz component of our energy momentum tensor is also uniform across

the chain.
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A Symplectic Methods

In this appendix we review the main denitions and theorems of symplectic transformations that show

up throughout this thesis. For a more complete review of these methods, see [2, 6, 7], and all the

references therein. Everything in this Appendix is either directly from or a corollary of the methods

in [2, 6, 7].

A.1 Symplectic Transformations

To start, we begin by constructing symplectic transformations. To do so, we must rst dene a

symplectic form:

Denition 1 Let V be a real vector space. Then, a symplectic form on V is a mapping ω : V ×V →
R which is bilinear and antisymmetric in its entries, and also non-degenerate.

Given any symplectic form, we can combine a real vector space with this form to form a symplectic

space, as dened below:

Denition 2 A real symplectic space is a pair (V,ω), with V a real vector space on R and ω a

symplectic form.

Finally, with this denition of real symplectic spaces, we can construct the group of symplectic trans-

formations:

Denition 3 The set of all symplectic automorphisms S : (E,ω) → (E,ω) forms a multiplicative

group, Sp(E,ω) satisfying:

SJST = J, (A.1)

where we choose J , in block-diagonal form, to be:

J =


0 I

−I 0


, (A.2)

with I being the N × N identity matrix. More generally, J is just some 2N × 2N antisymmetric,

invertible matrix.
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This machinery on its own is quite beautiful, and can be seen as a generalization of orthogonality.

That is, the statement of orthogonality is that OOT = I for some matrix, O, or rather OIOT = I.

Thus, a symplectic matrix is seen to be the case where we replace the usual identity matrix, I, with

some invertible, antisymmetric matrix, J

A.2 Williamson’s Theorem

When considering symplectic transformations, we nd a slightly dierent form of diagonalization which

in the current analysis is indispensable:

Theorem 1 (Williamson’s Theorem) Let M be a positive-denite, real, 2N ×2N matrix. Then, there

exists a symplectic transformation, S, such that:

SMST = D, (A.3)

where

D =

N

j=1

dj


1 0

0 1


, (A.4)

where for all j, dj > 0 This set of numbers dj is known as the set of symplectic eigenvalues of M

A very accessible proof of this theorem is found in [6].

A.3 Symplectic Perturbation Theory

It is known that perturbation theory on symplectic matrices is more easily done using a multiplicative

perturbation structure, as opposed to the usual additive structure [2]. Thus, if we are perturbing a

symplectic matrix, S, in some small parameter g, we write the perturbative series as:

S(g) =

I + gB + g2C +O


g3


S0, (A.5)

which is natural when realizing the multiplicative nature of the symplectic structure13. We also know

that in order for S(g) to be symplectic, B must satisfy the following equation [2]:

BJ + JBT = 0, (A.6)

and further that C must satisfy:

CJ + JCT +BJBT = 0 (A.7)

Supposing that B is a block diagonal matrix, of the form B =


B11 B12

B21 B22


 Then, equation A.6

is equivalent to saying that B11 = −BT
22 and that B12 and B21 are symmetric.

B Entropy Maximizing States

Given some state on a lattice with energy distribution (E1,    , EN ), there always exists a von Neumann

entropy maximizing state with the same energy distribution [5]. We would like to nd the form of

this entropy-maximizing state, ρ Then, for a given set of onsite Ha subject to the constraint that

13Specically, that the symplectic matrices form a group under matrix multiplication.
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the expectation value of Ha is Ea, we see that, in order to nd ρ, we must extremize the equation of

constraint:

−Trρ log ρ −


a

βa (TrρHa − Ea)− γ (Trρ − 1) , (B.1)

where βa and γ are Lagrange multipliers. The second term above sets the expectation value of each

Ha to be Ea, while the third term above sets the normalization condition for our density matrix ρ.

Thus, extremizing equation B.1 by demanding a vanishing variation:

−Trδρ log ρ− δρ −


a

βa TrδρHa − γ Trδρ = 0 (B.2)

Tr


δρ


log ρ− 1 +



a

βaHa + γ


= 0 (B.3)

As equation B.3 holds for arbitrary δρ, we nd that our state ρ must satisfy:

log ρ = −


a

βaHa + const, (B.4)

meaning our ρ takes the form:

ρ = e−


a βaHaeconst (B.5)

And, imposing the constraint that ρ is properly normalized, we nd that:

econst =
1

Z(β)
=

1

Tr

e−


a βaHa

  (B.6)

Thus, our nal entropy-maximizing state is:

ρ =
1

Z(β)
e−


a βaHa , (B.7)

where Z(β) is our partition function.

C Useful Functions for Energy Gradient

We saw in section 3.2 that

Ea =
d

dβa



i

h0(di) (C.1)

We wish to pass the derivative through the sum. Doing so, we dene the following functions (following

closely the notation of [1]):

h0(di) = di − ln (2 cosh(di2)) (C.2)

h1(di) ≡ h′
0(di) = 1− sinh(di2)

2 cosh(di2)
=

1

2
(2− tanh(di2)) (C.3)

h2(di) ≡ h′
1(di) = −1

4


1− tanh2(di2)


 (C.4)

Then, passing the derivative through the sum, we nd that:

Ea =


i

h1(di)
ddi
dβa

(C.5)
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In section 3.3, we note that we wish to compute dEa

dβb
 Using equation C.5:

dEa

dβb
=



i

h2(di)
ddi
dβa

ddi
dβb

+


i

h1(di)
∂2di

∂βa ∂βb
, (C.6)

where these rst and second derivatives are dened in section 3.4.

References

[1] B. Swingle and M. Van Raamsdonk, Enhanced negative energy with a massless Dirac eld, 2212.02609.

[2] F. Sosa, J. Moro and C. Mehl, First order structure-preserving perturbation theory for eigenvalues of

symplectic matrices, SIAM Journal on Matrix Analysis and Applications .

[3] M.S. Morris and K.S. Thorne, Wormholes in spacetime and their use for interstellar travel: A tool for

teaching general relativity, American Journal of Physics 56 (1988) 395.

[4] M. Sparnaay, Measurements of attractive forces between at plates, Physica 24 (1958) 751.

[5] B. Swingle and I.H. Kim, Reconstructing quantum states from local data, 1407.2658.

[6] M. Wilde, Gaussian quantum information lecture notes, chapter 9.

https://markwilde.com/teaching/2019-spring-gqi/.

[7] M. Yusofsani, Symplectic geometry and wiliamson’s theorem.

https://www.math.arizona.edu/~rsims/ma541/Seye_lec.pdf.

– 20 –


