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Outlook

• Wormholes are solutions to 
Einstein’s equations that connect 
two separated regions of 
spacetime

• Traversable wormholes allow a 
particle to enter from one side 
and then exit through the other 
in a finite amount of time

Figure 2: Illustration of a traversable 
wormhole [J. Wheeler, 1955]

Figure 1: Visualization of the Casimir effect 
[K. Kingsbury, 2009]. The greater number of 
light modes outside the plates exert an 
inward force on the plates
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• Certain wormholes become 
traversable given large enough 
amounts of negative energy 

• Recent work inspired by the 
Casimir effect (c.f. [7]) 
demonstrates that there exist 
states of fermionic matter which 
produce arbitrarily large amounts 
of negative energy

• The existence of these large 
amounts of negative energy is 
important in certain developing 
models of cosmology

• The Casimir effect is a quantum 
phenomenon whereby two 
uncharged parallel plates are 
pushed together

• This effect is due to vacuum 
fluctuations, as only a discrete 
number of wavelengths of light 
can fit in between the plates

Figure 3: Common types of wormholes

We wish to find other physical systems that produce arbitrarily large 
amounts of negative energy

• Our model is a nearest-neighbor interacting lattice of bosonic harmonic 
oscillators (e.g., photons):

Figure 4: Our model of a 
bosonic lattice (many 
masses coupled via 
springs) with the question 
marks indicating that we 
don’t specify boundary 
conditions
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Goal: Numerically explore the amount of uniform negative energy that 
can exist on our chain

• We attach a temperature-like parameter to each site of the chain, 
which we then numerically vary while constraining the energy density 
to be uniform

• Because we don’t specify the boundary conditions, we essentially 
search over all possible states and boundary conditions in our 
optimization
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Figure 5: Example of periodic 
boundary conditions for N=5 
(i.e., the end sites are 
identified) viewed from the 
top (top) and from the side 
(bottom)

• Numerical analysis is currently underway, and 
preliminary results suggest that the bulk energy density 
is roughly uniform, although more robust results are 
needed

• Next steps:
• Get numerics running for our bosonic chain
• Consider higher dimensional lattice realizations
• Explore properties of the traversable wormholes 

motivating this project

• Technically, we use the result that, 
given a state that fixes the 
expectation values of some operators, 
there exists a corresponding entropy-
maximizing state with those same 
expectation values:

• The temperature-like variables (βr) are 
what we vary given the constraint that 
the energy densities (εr) are uniform 
in r. 
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